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Abstract

All-in-one restoration needs to implicitly distinguish between
different degradation conditions and apply specific prior con-
straints accordingly. To fulfill this goal, our work makes the
first effort to create an all-in-one restoration via unrolling
from the typical maximum a-posterior optimization func-
tion. This unrolling framework naturally leads to the con-
struction of progressively solving models, which are equiv-
alent to a diffusion enhancer taking as input dynamically
generated prompts. Under a score-based diffusion model, the
prompts are integrated for propagating and updating sev-
eral context-related variables, i.e. transmission map, atmo-
spheric light map, and noise or rain map progressively. Such a
learned prompt generation process, which simulates the non-
linear operations in the unrolled solution, is combined with
linear operations owning clear physics implications to make
the diffusion models well-regularized and more effective in
learning degradation-related visual priors. Experimental re-
sults demonstrate that our method achieves significant perfor-
mance improvements across various image restoration tasks,
realizing true all-in-one image restoration.

Introduction
Image restoration (IR) aims to reconstruct a high-quality
(HQ) image from its degraded low-quality (LQ) version. It
has a wide range of applications in various fields, including
photography, surveillance analysis, medical imaging, foren-
sics, etc. The goal of IR is to recover the original scene
or object in its best possible quality, despite the presence
of various forms of degradation. Traditional IR methods re-
lied heavily on mathematical models and hand-crafted fea-
tures, e.g. Wiener filtering, Total Variation (TV) regulariza-
tion, and Non-Local Means (NLM) commonly used for IR
tasks like denoising, deblurring, and inpainting. These meth-
ods are effective to a certain extent but often struggle with
complex degradations, as they lack the capacity to model the
intrinsic details of natural images.

With the rise of deep learning, image restoration wit-
nessed a significant change. Recent deep learning-based IR
approaches excel in addressing single kind of degradation,
such as denoising (Zhang et al. 2017), deblurring (Ruan et al.

*Corresponding Author.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

IR Block

All-in-one IR Block

Contrastive 
Learning 

Physic Principles

Diffusion

Prompt Physics Var. in 
Uni-Modeling

...×m

(a) Multiple Expert Head

(b) Task-specific priors 

(c) OursLow Quality Images High Quality Images

Figure 1: Comparison of existing all-in-one image restora-
tion methods. (a) Multiple Expert Heads: Utilizes separate
expert heads for different tasks, requiring task-specific train-
ing and storage. (b) Task-specific Priors: Employs a unified
IR block with physical principles by contrastive learning to
handle multiple tasks, but is limited by the need for multi-
stage training. (c) Ours: Proposing a diffusion model guided
by prompt blocks and physics variables derived from a uni-
fied degradation model to upgrade prompts, offering a more
generalized and adaptable solution across various degrada-
tion scenarios.

2022), adverse weather removal (Özdenizci and Legenstein
2023), and low-light enhancement (Guo et al. 2020). These
task-specific methods have demonstrated impressive perfor-
mance on individual degradation types.

However, real-world scenarios, such as autonomous driv-
ing and outdoor surveillance, often include complex and
dynamic degradation that single degradation methods fail
to handle effectively (Mao et al. 2017). Such complex vi-
sual signals obtained from real scenes have driven the need
for all-in-one image restoration approaches that aim to
handle multiple degradations within a unified model. Ex-
isting all-in-one methods leverage techniques such as (1)
contrastive learning (Li et al. 2022), (2) task-specific sub-
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networks (Park, Lee, and Chun 2023) that train a sepa-
rate subnetwork for each type of degradation and then as-
sess the proportion of each degradation presented in an im-
age, (3) task-specific priors (Valanarasu, Yasarla, and Pa-
tel 2022) that learn priors that are strongly correlated with
specific degradations, and then used for restoration, and (4)
task-agnostic priors (Liu et al. 2022) that focus on learn-
ing general priors from natural images that are not tied to
any specific type of degradation. While these approaches
have shown promising results, they still face significant chal-
lenges in practical applications. Specifically, their heavy re-
liance on specific degradation modeling formulation and the
complicated multi-stage training processes limit their practi-
cal adaptability and scalability to diverse real-world scenar-
ios.

Diffusion models (Ho, Jain, and Abbeel 2020a), known
for their powerful generative capabilities, have recently
gained attention for various vision tasks, including image
restoration, such as deraining (Cui et al. 2022), denois-
ing (Choi et al. 2021), super-resolution (Saharia et al. 2023),
deblurring (Whang et al. 2022), as well as adverse weather
removal (Özdenizci and Legenstein 2023). These models
progressively recover clean images from noisy ones through
a forward diffusion process, unlike traditional CNNs and
transformer-based methods that directly estimate clear im-
ages in a single pass. While diffusion models show great po-
tential in restoration tasks, they lack awareness of degrada-
tion modeling and visual prior regularization, focusing more
on transitioning between distributions than capturing intrin-
sic representations. This limitation prevents these models
from fully adapting to handling different inputs, raising the
requirement of additional constraints for that.

To address the issue, we trace back to the root of the
problem, the Maximum A Posteriori (MAP) principle, for
image restoration. The restoration solution is constrained to
combining the fidelity term and the degradation prior regu-
larization. It can be solved with an unrolling solution pro-
gressively, e.g. the proximal gradient (Combettes and Wajs
2005), augmented Lagrangian (Hestenes 1969), split Breg-
man (Goldstein and Osher 2009), and alternating direction
method of multipliers (Bartz, Campoy, and Phan 2022),
which have characteristics that are similar to the progres-
sive nature of diffusion models. This inspires us to consider
whether we can explore the possibility of integrating MAP-
inspired techniques with diffusion models to enhance their
performance. To this end, we make efforts to combine the
strengths of diffusion models with a prompt-based network,
unrolling the iterative process and breaking it into simpler
sub-problems for faster and more stable convergence. The
prompt network serves to estimate the degradation physics
prior progressively and bypasses these factors for regulariz-
ing the diffusive process. Our method, inspired by MAP for-
mulation, aims to make diffusion models more input-aware
and effective in handling complex real-world degradation.

Our contributions are as follows:
• We propose a unified degradation model that combines

multiple degradation models into one system and trans-
forms it into an optimization problem using the score-
based model. Inspired by ADMM, a prompt-based diffu-

sion network, Up-Restorer is built to simulate and unroll
an iterative optimization, breaking it into simpler sub-
problems.

• We introduce a prompt-based optimization network that
generates prompts and variables from the ADMM-
derived equation to guide the diffusive restoration pro-
cess. The prompts are applied to predict and bypass these
variables during the process, dynamically adjusting each
image’s degradation characteristics for accurate and ef-
fective restorations.

• We integrate learnable query parameters into the Diffu-
sion Transformer, allowing the model to adapt dynam-
ically to varying degradations, which further improves
flexibility and performance across diverse degradation
scenarios.

Related Work
Multiple Degradations Image Restoration
Many image restoration methods focus on specific tasks us-
ing convolutional neural networks (Zhang and Patel 2018;
Li et al. 2018b) or vision transformers (Zhang et al. 2020;
Zamir et al. 2022), but they struggle to generalize across dif-
ferent degradation types. To overcome this, multi-task and
all-in-one methods have been developed to handle diverse
scenarios. Multi-task methods solve multiple tasks within a
single model using separate modules, such as task-specific
heads (Chen et al. 2021) or feature extractors (Li, Tan, and
Cheong 2020). However, they may struggle with unknown
degradations. All-in-one methods (Li et al. 2022; Potlapalli
et al. 2023) offer a more flexible approach by handling vari-
ous degradations within a single model without prior knowl-
edge. These methods use techniques like contrastive learn-
ing (Li et al. 2022) or dynamic prompts (Potlapalli et al.
2023) to adapt to different conditions. Unlike previous meth-
ods, we integrate diffusion models with prompt-based mech-
anisms in a unified framework. We introduce a unified degra-
dation model and simulate the ADMM optimization process
with a prompt-based unrolling network, allowing dynamic
adjustment to degradation characteristics. Learnable queries
in the Diffusion Transformer further enhance flexibility and
adaptability.

Prompt Learning for Image Restoration
Prompt learning, initially developed for incorporating addi-
tional text inputs into pre-trained large language models to
influence output generation (Brown et al. 2020), has since
evolved into a broader technique used in model training
and fine-tuning (Wang et al. 2023b). In the field of image
restoration (IR), approaches like ProRes (Ma et al. 2023) and
PromptGIP (Liu et al. 2023) utilize additional images or im-
age pairs as prompts to inform the model about the specific
IR task. These methods represent explicit prompt learning.

However, real-world IR tasks often involve images for
which the specific degradation type is unclear. This has
led to the development of techniques that adaptively extract
prompts from the input image itself (Li et al. 2022). Promp-
tIR (Potlapalli et al. 2023) employs a classifier-based archi-
tecture to identify degradation details within images, though
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this approach still depends on additional degradation con-
text, making it akin to explicit prompt learning.

In our work, we incorporate prompts into the ADMM-
based iterative optimization framework, where prompts dy-
namically adjust parameters like the transmission map and
noise map during each iteration. These prompts are gen-
erated adaptively based on the input features, guiding the
restoration process in a unified manner across different
degradation scenarios.

Unified Prompt-based Unrolling Restoration
Existing all-in-one image restoration methods have several
neglected issues: 1) they fail to consider the commonali-
ties and differences among various degradation types, result-
ing in limited performance; 2) existing methods are ineffi-
cient due to the usage of multiple expert heads, contrastive
training, or complex multiple training stages. To avoid
these shortcomings, we propose a unified image restoration
modeling: 1) first to achieve all-in-one restoration by un-
rolling from the maximum a-posteriori optimization func-
tion, which excels at conditional modeling with prompts,
handling various types of degradation better. 2) introducing
learnable queries in the diffusion transformer with prompt-
based modules to apply the physics prior constraint in the
progressive optimization process.

Our method is rooted in MAP estimation and follows
an ADMM-solver-based design, integrating the advantages
of both data-driven and physics-based approaches. It holds
even greater value in addressing universal restoration.

Preliminary: Score-based Diffusion Model
The score-based diffusion model (Ho, Jain, and Abbeel
2020b; Song et al. 2021b) is a generative model that adds
noise to data through a diffusion process and learns to re-
verse this process to generate samples (Anderson 1982).
Given a dataset with n-dimensional i.i.d. samples from an
unknown distribution p(x0), the forward process is de-
scribed by the stochastic differential equation (SDE):

dxt = f (xt, t) dt+ gtdwt, (1)

where f is the drift coefficient, gt the scalar diffusion coeffi-
cient, and wt standard Brownian motion. As t progresses
from 0 to T , p(x0) evolves into p(xT ), approximating a
standard Gaussian distribution pprior(x). The reverse-time
SDE (Anderson 1982) that maps p(xT ) back to p(x0) is:

dxt =
[
f (xt, t)− g2t∇xt

log p(xt)
]
dt+ gtdwt. (2)

To reverse the diffusion process, starting from p(xT ), the
score function ∇xt

log p(xt) is parameterized as sθ(xt, t).
The model is trained using conditional score matching (Vin-
cent 2011), minimizing the loss:

L =
1

2

∫ T

0

Ext

[
λ(t) ∥∇xt

log p(xt)− sθ(xt, t)∥2
]
dt

≈ 1

2

∫ T

0

Ex0,xt

[
λ(t) ∥∇xt

log p(xt|x0)− sθ(xt, t)∥2
]
dt,

where λ(t) is often set to g2t for an optimal upper bound
on the negative log-likelihood (Song et al. 2021a). The sec-
ond line is used when the conditional probability p(xt | x0)
is available. To generate samples, we start with xT from
p(xT ) ≈ pprior(x) and solve Equation 2 iteratively to obtain
x0.

The score-based model and diffusion model essentially
perform similar tasks, with the score function sθ(xt, t) cor-
responding to the noise predicted at each time step in the
diffusion model.

Unified Modeling Guided by Progressive Solution
To address the limitations of existing image restoration
methods, we propose a unified degradation modeling ap-
proach. The degradation model is formulated as follows:

I = J · t+A · (1− t) +N, (3)

where I is the degraded image, J is the clean image, t is the
transmission map, A is the atmospheric light map, and N is
the noise or rain map. This unified model can handle various
types of degradation, including rain, haze, and noise. If N is
zero, the model reduces to the dehazing problem:

I = J · t+A · (1− t), (4)

and when t = 1, it reduces to a simple denoising and derain-
ing model:

I = J +N. (5)

Assume the clean image J and the degraded image I fol-
low the model described above. The goal is to maximize the
posterior probability p(J |I), which can be achieved by min-
imizing the negative log-posterior:

argmin
J

{− log p(I|J)− log p(J)} . (6)

Here, p(I|J) is the likelihood function and p(J) is the prior
distribution. Assuming Gaussian observation noise with σ as
standard deviation, the likelihood function is:

p(I|J) = exp

(
− 1

2σ2
∥I − J · t−A · (1− t)−N∥2

)
.

In the score-based model, our diffusion model fits the score
function sθ(J), which is the gradient of the log-data distri-
bution sθ(J) ≈ ∇J log p(J). Thus, we can write:

log p(J) =

∫
sθ(J) dJ + C, (7)

where C is an integration constant. Ignoring the constant
term, the objective function becomes:

argmin
J

{
∥I − J · t−A · (1− t)−N∥2

2σ2
−
∫

sθ(J) dJ

}
.

We can use the Alternating Direction Method of Multipli-
ers (ADMM) to solve this optimization problem because
ADMM effectively handles complex optimization tasks by
decomposing them into simpler subproblems, facilitating ef-
ficient convergence. Introducing an auxiliary variable U and
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Figure 2: The framework employs a multi-level encoder-decoder structure in which Diffusion Transformers progressively
process degraded images. At each level, Prompt Blocks generate and store prompts that estimate and bypass the physics
degradation-related variables. These prompts, along with learnable queries in the Diffusion Transformer, are refined in the
Prompt Upgrade Module like Eqn. (14) shows, which significantly boosts the model’s capacity to adaptively restore images
across different degradation scenarios.

Lagrange multipliers λ, the original problem is transformed
into:

argmin
J,U

A(J) +B(U),

A(J) =
1

2σ2
∥I − J · t−A · (1− t)−N∥2,

B(U) = −
∫

sθ(U) dU, subject to J = U.

(8)

The corresponding Lagrangian function is:

L(J, U, λ) =
1

2σ2
∥I − J · t−A · (1− t)−N∥2

−
∫

sθ(U) dU +
ρ

2
∥J − U∥2 + λT (J − U),

(9)

where ρ is a penalty parameter. This optimization problem
can be divided into three iterative steps, each considered as
a simpler sub-optimization problem:

Step 1: Update J: Fixing U and λ, we update J by solv-
ing the following optimization problem:

Jk+1 = argmin
J

{
1

2σ2
∥I − J · t−A · (1− t)−N∥2

+
ρ

2
∥J − Uk∥2 + (λk)T (J − Uk)

}
.

This is a quadratic optimization problem in terms of J .
Since it is a quadratic problem, it can be efficiently solved
using standard methods for quadratic optimization. The so-
lution is given by:

Jk+1 = (
t2

σ2
+ ρ)−1(

t · (I −A · (1− t)−N)

σ2

+ ρUk − λk) where λk = −sθ(U
k).

(10)

The optimization of J in this step is to refine the clean image
based on the estimated physical variables A, N , t, and M . In
the network, directly updating features in the latent and de-
coder feature space can disrupt the original diffusion model
gradients. Therefore, we use prompts to perform these up-
dates according to the iterative steps, implicitly storing key
physics variables in the latent space for unified restoration,
while guiding the model with these prompts.

Step 2: Update U : Fixing J and λ, we update U by solv-
ing the following optimization problem:

Uk+1 = argmin
U

{
−
∫

sθ(U) dU

+
ρ

2
∥Jk+1 − U∥2 + (λk)T (Jk+1 − U)

}
.

(11)

We have Uk+1 to satisfy:

Uk+1 = Jk+1 +
sθ(U) + λk

ρ

= Jk+1 +
sθ(U

k+1)− sθ(U
k)

ρ
.

(12)

The second iteration step is to compute Uk+1 that satisfies
Eqn.(12), corresponding to the step of denoising process.

Step 3: Update Lagrange Multipliers λ: Finally, we up-
date the Lagrange multipliers λ to enforce the constraint
J = U . This is done by solving:

λk+1 = λk + ρ(Jk+1 − Uk+1) = −sθ(U
k+1). (13)

The third iteration step is equal to the noise estimation net-
work.
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Figure 3: Visual results comparison with other all-in-one image restoration methods.

In the whole framework, each module corresponds
to an ADMM step: 1. Update J is the Prompt Upgrade
Module that simulates ADMM’s Update J by incorporat-
ing degradation characteristics. 2. Update U is the denoising
process. 3. Update λ is the noise estimation network.

It aligns with three iterative equations, with all steps be-
ing data-driven. The last two steps use the diffusion model’s
powerful generative capability, while the first step automat-
ically learns degradation characteristics to optimize J , en-
abling Up-Restorer to learn various degradation types. The
Prompt Upgrade Module is designed as follows:

Prompt-Based Unrolling Network

To simulate the iterative process derived in the previous sub-
section, we design a prompt-based unrolling network. This
network generates prompts that dynamically adjust the pa-
rameters in our unified model during the restoration process.

The prompt generation block creates prompts based on
the input features. The input features are first averaged to
form an embedding vector, which is then processed through
a linear layer followed by a softmax activation to generate
prompt weights. These weights scale the learnable prompt
parameters, creating a tailored prompt P for each input im-
age. The prompt is then refined using a convolutional layer
to match the dimensions of the input features.

In our unified model, the iterative equation Eqn. (10) is
simulated using this prompt-based approach. Here, t repre-
sents the transmission map, which ranges between 0 and 1. It
is obtained by processing the input through a linear layer fol-
lowed by a sigmoid activation. N represents the noise map
and is derived directly from another linear layer. The term(

t2

σ2 + ρ
)−1

is treated as M , which is learnable parameter
map, and A is also modeled as a learnable map. At each
stage of the network, the input features are used to generate
the prompt, which then produces the parameters t, N , M ,
and A. These parameters are utilized to update the prompt P

according to the iterative equation Eqn. (10) and Eqn. (13).

P = M

(
t · (xt −A · (1− t)−N)

σ2
+ ρP − sθ(xt, t)

)
.

(14)

Specifically, the generated prompt is used to adjust the
feature maps by incorporating the degradation-specific in-
formation, ensuring that the model dynamically adapts to
the characteristics of each input image. This adaptive mech-
anism allows the network to effectively handle diverse types
of image degradation.

The adjusted feature maps are then concatenated with the
original input features and processed through a series of con-
volutional layers to produce the final restored image. This
prompt-based unrolling network thus effectively simulates
the ADMM optimization process, providing a robust and ef-
ficient solution for unified image restoration.

Two-Stage Training with Combined Loss Functions
To optimize our diffusion model for image restoration, we
follow the C2F-DFT (Wang et al. 2023a) to implement a
two-stage training process based on ADMM iterative steps
2 and 3, ensuring the auxiliary variable U closely aligns with
the main variable J .

Stage 1: Diffusion Model Training
In the first stage, the diffusion model is trained to mini-

mize the L1 loss between the predicted and actual noise:

Ldiff = Et∼[1,T ],x0,ϵt ∥ϵt − ϵθ(xt,y, t)∥1 , (15)

where ϵθ denotes the noise estimation network.
Stage 2: Image Restoration Optimization
The second stage optimizes restored images by minimiz-

ing a combination of SSIM and L1 losses:

Lres = α(1− SSIM(J,xgt)) + (1− α) ∥J − xgt∥1 , (16)

where J is the restored image, and xgt is the ground truth.
By iteratively updating U and J through these stages, our

method effectively incorporates degradation-specific infor-
mation, ensuring robust and high-quality restoration across
various degradation types.
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Method Dehazing Deraining Denoising on BSD68 dataset (Martin et al. 2001)) Average
on SOTS (Li et al. 2018a) on Rain100L (Fan et al. 2019) σ = 15 σ = 25 σ = 50

BRDNet 23.23/0.895 27.42/0.895 32.26/0.898 29.76/0.836 26.34/0.836 27.80/0.843
LPNet 20.84/0.828 24.88/0.784 26.47/0.778 24.77/0.748 21.26/0.552 23.64/0.738
FDGAN 24.71/0.924 29.89/0.933 30.25/0.910 28.81/0.868 26.43/0.776 28.02/0.883
MPRNet 25.28/0.954 33.57/0.954 33.54/0.927 30.89/0.880 27.56/0.779 30.17/0.899
Restormer 29.30/0.976 33.23/0.948 32.95/0.917 30.91/0.885 27.55/0.785 30.79/0.902

DL 26.92/0.391 32.62/0.931 33.05/0.914 30.41/0.861 26.90/0.740 29.98/0.875
AirNet 27.94/0.962 34.90/0.967 33.92/0.933 31.26/0.888 28.00/0.797 31.20/0.910
PromptIR 30.58/0.974 36.37/0.972 33.98/0.933 31.31/0.888 28.06/0.799 32.06/0.913
WeatherDiffusion 25.54/0.971 31.53/0.961 33.26/0.926 30.51/0.871 26.75/0.745 29.32/0.895
DA-CLIP 26.83/0.962 35.85/0.972 31.43/0.889 25.05/0.605 18.33/0.308 27.50/0.747
IDR 21.05/0.856 33.53/0.947 32.90/0.911 30.38/0.866 27.03/0.765 28.98/0.869

Up-Restorer 30.68/0.977 36.74/0.978 33.99/0.933 31.33/0.888 28.07/0.799 32.16/0.915

Table 1: Comparisons under All-in-one restoration setting: single model trained on a combined set of images originating from
different degradation types. When averaged across different tasks, our method provides a significant gain of 0.10 dB over the
previous all-in-one method PromptIR (Potlapalli et al. 2023). The best and second-best methods are highlighted and underlined.

Dehazing Results on SOTS

Method DehazeNet MSCNN AODNet EPDN FDGAN AirNet Restormer PromptIR Up-Restorer

PSNR 22.46 22.06 20.29 22.57 23.15 23.18 30.87 31.31 31.12
SSIM 0.851 0.908 0.877 0.863 0.921 0.900 0.969 0.973 0.972

Deraining Results on Rain100L

Method DIDMDN UMR SIRR MSPFN LPNet AirNet Restormer PromptIR Up-Restorer

PSNR 23.79 32.39 32.37 33.50 33.61 34.90 36.74 37.04 39.52
SSIM 0.773 0.921 0.926 0.948 0.958 0.977 0.978 0.979 0.986

Table 2: Dehazing and Deraining results in the single-task setting on the SOTS benchmark dataset and Rain100L.

Learnable Queries in Diffusion Transformer

To enhance the flexibility and adaptability of our Diffusion
Transformer (DFT), we integrate additional learnable query
parameters into the self-attention mechanism. This integra-
tion allows the model to dynamically adapt to various image
degradations, improving its performance in handling diverse
and complex scenarios.

Overall Pipeline: Given paired clean and degraded im-
ages {x, y} ∈ RH×W×3, where H ×W denotes the spatial
dimensions, we first obtain the noise sample xt ∈ RH×W×3

by adding Gaussian noise ϵt ∼ N (0, I) at time step t on the
clean image x. The noisy image xt is concatenated with the
degraded image y to form the input H ∈ RH×W×6. This
input is then encoded using a 3×3 convolution to obtain the
embedding feature F0 ∈ RH×W×C . The feature F0 is pro-
cessed through the DFT blocks (DFTBs) in a hierarchical
manner, with the time step t encoded into a feature T which
is embedded into the DFTBs. Skip connections are used to
link features at the same level in the encoder and decoder.
Finally, a 3 × 3 convolution is used to produce the residual
image, which is added to xt to obtain the estimated noise
Ĥ ∈ RH×W×3.

Learnable Queries: We enhance the self-attention mech-
anism by adding learnable query parameters QL. These
learnable queries are added to the original queries, allowing

the model to better adapt to specific degradations:

Q̃ = Q+QL, (17)

where QL are the learnable queries randomly initialized.
The modified attention mechanism becomes:

A(Q̃,K, V ) = V · Softmax

(
K · Q̃
β

)
. (18)

where β is a learnable scaling parameter.
Integrating learnable queries into the Diffusion

Transformer enables our model to dynamically encode
degradation-specific information, optimizing the restoration
process for effective recovery across various degradation
types. This approach ensures robust generalization, leading
to higher-quality restorations.

Experiments
To demonstrate the effectiveness of our proposed method,
we evaluate it on three primary image restoration tasks: im-
age dehazing, image deraining, and image denoising. Fol-
lowing the methodology in (Li et al. 2022) and (Potlapalli
et al. 2023), we perform experiments under two distinct set-
tings: (a) All-in-One, and (b) Single-Task. In the All-in-One
setting, a unified model is trained to handle all three types of
degradations. Conversely, in the Single-task setting, separate
models are trained for each specific restoration task.
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Designs Denoising on BSD68 dataset (Martin et al. 2001) Deraining on Dehazing on
Learnable Q Prompt Block Physics Variables σ = 15 σ = 25 σ = 50 Rain100L (Fan et al. 2019) SOTS (Li et al. 2018a)

✓ ✗ ✗ 33.57/0.923 31.08/0.882 27.68/0.779 34.72/0.959 29.23/0.970
✓ ✓ ✗ 33.66/0.926 31.09/0.885 27.72/0.785 34.64/0.957 29.51/0.972
✗ ✓ ✓ 33.80/0.929 31.14/0.879 27.74/0.790 35.68/0.966 29.74/0.973

✓ ✓ ✓ 33.99/0.933 31.33/0.888 28.07/0.799 36.74/0.978 30.68/0.977

Table 3: Performance of the Up-Restorer network, when remove different modules.

Prompt Block Position PSNR SSIM

levels 1+3 35.93 0.971
levels 1+2 36.26 0.975
levels 2+3 36.55 0.976
levels 1+2+3 36.74 0.978

Table 4: Prompt blocks position results on Rain100L.

Datasets and Evaluation Metrics

Building upon the work of (Li et al. 2022), we conduct com-
prehensive experiments across five image restoration tasks:
image denoising at noise levels σ = 15, 25, 50, image de-
raining, and image dehazing.

For these tasks, we use datasets: BSD400, BSD68 (Mar-
tin et al. 2001), and WED (Ma et al. 2016) for image de-
noising, Rain100L (Yang et al. 2020) for image deraining,
and RESIDE (Li et al. 2018a) for image dehazing. Following
the division in (Li et al. 2022), BSD400 and WED are used
for training while BSD68 is used for testing with 68 ground
truth images. For image deraining, we use the 1800 rain-
clean paired images and 100 testing pairs provided in the
Rain100L dataset. For image dehazing, we use the Outdoor
Training Set (OTS) for training and the Synthetic Objective
Testing Set (SOTS) for testing from the RESIDE dataset.

We evaluate performance using Peak Signal-to-Noise Ra-
tio (PSNR) and Structural Similarity Index Measure (SSIM).
In the results tables, the best and second-best methods are
highlighted and underlined, respectively.

Implementation Details

Our framework consists of a four-level encoder-decoder
structure, with each level’s Diffusion Transformer contain-
ing different numbers of Transformer blocks: [4, 6, 6, 8]
from the first to the fourth level. We use a Prompt Block be-
tween every two consecutive decoder levels, totaling three
Prompt Blocks in the network. Each Prompt Block contains
five Prompt Components with a channel dimension of 1.
The model is trained in a multi-degradation all-in-one set-
ting with batch sizes of 120 and 20 for the two training
phases, and a batch size of 120 in the single degradation
setting. The network is optimized using the Adam optimizer
(β1=0.9, β2=0.999), with the learning rate reduced to 0.01
after 50,000 epochs. Training the model to convergence re-
quires only one day on a single 4090 GPU, using 128 × 128
cropped patches as input.

Method or Module Parameters

DA-CLIP 48,975,747 + 246,213,634 (CLIP)
IDR 12,262,448
Restormer 26,126,644
WeatherDiffusion 85,606,147
C2F-DFT (Backbone) 25,363,344
Prompt Upgrade Module 2,148,576
Learnable Query 500,352

UpRestorer (Total) 28,012,272

Table 5: Comparison of model parameters across various
methods and modules.

Model Parameter Comparison
We also compare the parameter counts of various meth-
ods and components of our model. The Prompt and Prompt
Upgrade Module adds only 8% to the total number of pa-
rameters, while the learnable queries contribute an addi-
tional 2%. As a result, our final Up-Restorer model remains
lightweight, with the majority of the parameters coming
from the backbone C2F-DFT. Table 5 summarizes the pa-
rameter counts of our method and several recent models.

Multiple Degradation All-in-One Results
We compared the proposed Up-Restorer with several gen-
eral image restoration methods (Tian, Xu, and Zuo 2020;
Gao et al. 2019; Dong et al. 2020; Zamir et al. 2021, 2022)
and specialized all-in-one methods (Fan et al. 2019; Li et al.
2022; Potlapalli et al. 2023; Özdenizci and Legenstein 2023;
Luo et al. 2023; Zhang et al. 2023). The results are presented
in Table 1. Compared to previous methods, our algorithm
achieves the best overall performance when averaged across
different restoration tasks. The visual examples in Figure 1
show that Up-Restorer effectively removes rain, haze, and
noise from various degraded input images and benefits from
the powerful generative capabilities of the diffusion model,
producing clearer and more visually pleasing details than
other methods. For other tasks, we also extend to deblurring,
desnowing, and super-resolution tasks. For deblurring, we
used the GoPro dataset; for desnowing, we selected 611 im-
ages from the Snow100K dataset; and for super-resolution,
we used the RealSR dataset. The performance was evaluated
using PSNR and SSIM metrics. Table 7 presents the results
of our Up-Restorer model compared with several state-of-
the-art methods across these tasks. Figure 4 shows the trans-
mission map t after training, it closely matches the actual
input image, indicating that the module has indeed learned
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Method Rain100L SOTS BSD68 (σ = 50)
LPIPS ↓ HFD-IQA ↑ Hyper-IQA ↑ LPIPS ↓ HFD-IQA ↑ Hyper-IQA ↑ LPIPS ↓ HFD-IQA ↑ Hyper-IQA ↑

Ours 0.0145 22.9767 56.73 0.0153 24.9012 61.36 0.1822 21.8093 50.78
DA-CLIP 0.0173 22.8600 56.33 0.0213 24.7841 60.54 0.7820 19.4388 44.23
IDR 0.0663 22.7916 55.66 0.2786 24.6320 56.38 0.2314 21.3319 46.41
Restormer 0.0635 22.6849 55.32 0.0152 24.9466 60.64 0.2393 21.0835 47.83
WeatherDiffusion 0.0293 22.7988 56.12 0.1304 24.9056 60.57 0.3208 21.5863 50.40

Table 6: Perceptual and blind image quality metrics for Deraining (Rain100L), Dehazing (SOTS), and Denoising (BSD68).

Dataset Snow100K S RealSR GoPro

Up-Restorer 32.78/0.9515 32.39/0.9047 29.00/0.8808
TransWeather 32.51/0.9341 - -
Restormer - - 32.92/0.961
RCAN - 33.87/0.922 -

Table 7: PSNR/SSIM for deblurring (GoPro), desnowing
(Snow100K), and super-resolution (RealSR).

essential degradation attributes.

Figure 4: The transmission map t for different tasks af-
ter training. The three lines represent rain, haze, and noise
degradation. The odd-numbered columns are input images,
and even-numbered columns are their corresponding trans-
mission maps in the model.

Single Degradation One-by-One Results
In this section, we evaluate the performance of Up-Restorer
in a single-task setting, where separate models are trained
for different restoration tasks within the original framework.
This evaluation demonstrates the adaptability of the content
and the network architecture’s learning capability on indi-
vidual tasks. Table 2 shows the results for the dehazing task
compared with single image dehazing methods (Cai et al.
2016; Ren et al. 2016; Li et al. 2017; Qu et al. 2019), and
the deraining task compared with some single image derain-
ing methods (Zhang and Patel 2018; Yasarla and Patel 2019;
Wei et al. 2019; Jiang et al. 2020). Our Up-Restorer achieves
strong results across all tasks, particularly excelling in the
deraining task, where it outperforms the PromptIR (Potla-
palli et al. 2023) method by 2.48 dB, showcasing the model’s
robust learning capability in rain removal.

Additional Perceptual and No-Reference Metrics
To further evaluate the performance of our method, we in-
corporated three additional metrics: LPIPS, HFD-IQA (Wu

et al. 2017), and Hyper-IQA (Su et al. 2020). LPIPS is a
widely used metric that evaluates perceptual quality based
on a ground truth reference, while HFD-IQA and Hyper-
IQA are no-reference image quality assessment metrics. For
HFD-IQA, we trained the required SVR model using de-
graded images from the TID2013 dataset, with their NQM
metrics as features extracted by a pre-trained ResNet50
model. For Hyper-IQA, we utilize the pre-trained model on
the Koniq-10k dataset, as provided by the authors.

Table 6 compares the performance of our method with
recent models, including DA-CLIP, IDR, Restormer, and
WeatherDiffusion, across the three perceptual metrics for
tasks such as deraining (Rain100L), dehazing (SOTS), and
denoising (BSD68, σ = 50). As shown in the table, our
method consistently achieves superior results in terms of
perceptual quality, outperforming existing models across all
metrics.

Ablations Studies

In the ablation study, we assess the impact of incorporat-
ing Prompt Blocks at different levels of our model, specifi-
cally during the transition from the latent space to the final
decoder. These Prompt Blocks, inserted at levels 1, 2, and
3, show the best performance when applied at all levels, as
seen in Table 4, demonstrating their cumulative effect in en-
hancing the model’s overall image restoration capability. We
also examine the influence of three key components: learn-
able queries, Prompt Blocks, and physics variables for uni-
fied modeling. Testing on the Rain100L dataset, as shown
in Table 3, indicates that all three components positively im-
pact performance.

Conclusion

In this paper, we presented Up-Restorer, a unified image
restoration framework that effectively addresses multiple
degradation types. Our approach leverages the innovative
use of prompt-based mechanisms to simulate iterative op-
timization processes within a diffusion model framework.
By integrating the Alternating Direction Method of Multi-
pliers with diffusion models, we developed a novel iterative
solving process that dynamically adjusts model parameters
in response to varying degradation conditions. These com-
bined innovations result in a powerful, adaptable solution
for all-in-one image restoration tasks, as demonstrated by
our extensive experimental evaluations.
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